
Stanford University July 26, 2014 1

Wallet
Secure Data Distribution and Management

2008 Update

Russ Allbery

May 13, 2008

Russ Allbery (rra@stanford.edu)



Stanford University July 26, 2014 2

Contents

• What is the Wallet?

• The Goal

• The Architecture

• Example Wallet Object

• Wallet Object Types

• Wallet ACL Verifiers

• Next Steps: 1.0...

• Next Steps: ...and Beyond

Russ Allbery (rra@stanford.edu)



Stanford University July 26, 2014 3

What is the Wallet?

• Manages any type of secure data

– Keytabs and simple files implemented

– WebAuth keyrings and X.509 CA planned

– Extensible system for adding new types

• Rich ACL mechanism

– Fine-grained access control for operations

– Simple identity and NetDB implemented

– Extensible system for adding more verifiers

– PTS, LDAP, and nested groups planned

• Built on remctl, but server and client can be replaced with any other

authenticated RPC layer (SOAP, REST, etc.) without major server changes

Russ Allbery (rra@stanford.edu)



Stanford University July 26, 2014 4

The Goal

• All secure data goes into the wallet

• All non-secure system information goes into Puppet

• Fully automated server deployment except for initial keying (and maybe initial

keying as well)

• Chained permissions: key the server and the server key can download other

required secure data

• Central management of secure data

• Allows automated rekeying where appropriate

• Unchanging support for generated objects

Russ Allbery (rra@stanford.edu)



Stanford University July 26, 2014 5

The Architecture

• Authorization and privacy via remctl protocol

• C client with simple command passthrough, handling of file creation and

some special keytab logic

• Server wrapper that interprets remctld authentication

• Wallet::Server handles ACL checking and high-level API

• Separate ACLs for show/get/store/destroy and owner

• Wallet::Object::* implements each wallet type

• Wallet::ACL::* (will be renamed) implements ACL types

• Basic support for local policy and object autocreation

Russ Allbery (rra@stanford.edu)



Stanford University July 26, 2014 6

Example Wallet Object

Type: keytab

Name: host/windlord.stanford.edu

Owner: host/windlord.stanford.edu

Enctypes: aes256-cts

Created by: rra/root@stanford.edu

Created from: windlord.Stanford.EDU

Created on: 2007-12-06 16:55:13

Downloaded by: rra/root@stanford.edu

Downloaded from: windlord.Stanford.EDU

Downloaded on: 2008-02-08 13:38:56

Members of ACL host/windlord.stanford.edu (id: 2) are:

krb5 host/windlord.stanford.edu@stanford.edu

netdb-root windlord.stanford.edu

Russ Allbery (rra@stanford.edu)



Stanford University July 26, 2014 7

Wallet Object Types

• Support create, destroy, get, store

• Can hook into flag settings

• Can support arbitrary per-type attributes (example: enctypes)

• Currently implemented:

– Simple file objects (opaque data chunks)

– Kerberos keytabs

Russ Allbery (rra@stanford.edu)



Stanford University July 26, 2014 8

Wallet ACL Verifiers

• Initialize method to create persistant resources

• Check method to check an identity against an ACL value

• Currently implemented:

– krb5 (simple identity comparison)

– NetDB roles (Stanford’s GPL’d host management software)

• Nested groups will require some special handling to prevent recursion

Russ Allbery (rra@stanford.edu)



Stanford University July 26, 2014 9

Next Steps: 1.0...

• Better history support for deleted objects

• Better reporting and search

• Heimdal support for the client (and maybe server)

• Upgrade support for the database

• LDAP and PTS ACL verifiers

• WebAuth keyring object type

• Tests, tests, tests

Russ Allbery (rra@stanford.edu)



Stanford University July 26, 2014 10

Next Steps: ...and Beyond

• X.509 and ssh keypair object type support

• Rekeying

• remctl server fixes to allow data containing nuls

• Better object templating for autocreation

• Even more documentation: conventions, naming, replacing the protocol

• More native Perl support for kadmin and Kerberos

• CGI and REST proof of concept

Russ Allbery (rra@stanford.edu)


